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1 SG Sequences

Definition 1. Let a1, a2, · · · , an be a sequence of positive integers. We say that the sequence is semi-
geometric if for all i = 1, 2, · · · , n−1, there exists and integer ki > 1 such that kiai = ai+1. For instance,
2,6,12,24 is semi-geometric, whereas 2,3,6,12 is not since 2 does not divide 3. We call all such sequences
semi-geometric sequences, or SG sequences.

Now that we’ve defined what SG sequences are, we will do some exercises that will help you better
understand the concept.

Problem 1 (4 points, 2 points each). Answering the following questions.

(a) Compute all SG sequences of length 5 such that a5 = 84.

Solution. Since we want SG sequences of length 5, there should be 4 values of ki, and we must have

a1 ×
4∏

i=1

ki = 84. Since 84 = 22 × 3 × 7, we must have a1 to be 1 and ki to be one permutation of

{2, 2, 3, 7}. In this way, we can compute all SG sequences:

{1, 2, 4, 12, 84} {1, 3, 6, 12, 84} {1, 7, 14, 28, 84}
{1, 2, 4, 28, 84} {1, 3, 6, 42, 84} {1, 7, 14, 42, 84}
{1, 2, 6, 12, 84} {1, 3, 21, 42, 84} {1, 7, 21, 42, 84}
{1, 2, 6, 42, 84}
{1, 2, 14, 28, 84}
{1, 2, 14, 42, 84}
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(b) Compute all SG sequences of length 3 such that a3 = 36.

Solution. Since we want SG sequences of length 3, there should be 2 values of ki, and we must have

a1 ×
2∏

i=1

= 36. Since 36 = 22 × 32, we can compute all SG sequences:

{1, 2, 36} {2, 4, 36} {3, 6, 36} {6, 12, 36} {4, 12, 36} {9, 18, 36}
{1, 4, 36} {2, 6, 36} {3, 12, 36} {6, 18, 36}
{1, 3, 36} {2, 18, 36} {3, 9, 36}
{1, 9, 36} {2, 12, 36} {3, 18, 36}
{1, 6, 36}
{1, 12, 36}
{1, 18, 36}

Problem 2 (4 points, 2 points each). Let a1, · · · , an be an SG sequence such that an = 50400.

(a) What is the largest possible value for n? (In other words, what is the length of the longest possible
sequence with last term equal to 50400?)

Solution. Since 50400 = 25 × 32 × 52 × 7, we can have a1 = 1 and ki be the prime factors of 50400.
Hence, the largest possible value for n would be (5 + 2 + 2 + 1) + 1 = 11.

(b) Let k be the answer you receive from part a. What is the number of distinct SG sequences of length
k such that ak = 50400?

Solution. Since a1 = 1 and we have ki to be one permutation of 5 twos, 2 threes, 2 fives, and 1 seven,
the number of distinct SG sequences of length 11 is 10!

5!·2!·2! = 7560.

Problem 3 (3 points). Find the number of distinct SG sequences whose last term equals 420. (Note: the
sequence (420) is also an SG sequence of length 1)

Solution. Let An,k denote the number of sequences with length n whose first term equals k and last term
equals 420. Let Sn denote the total number of sequences with length n whose last term equals 420. Hence,
we have

Sn =
∑
i|420

An,i.

Also, since we can add i at the beginning of the sequence starting with j if i|j and i < j, we have

An+1,i =
∑

i|j;i<j

An,j .

Since 420 = 22 × 3× 5× 7, we have 1 ≤ n ≤ 6 and all divisors of 420 are

{1, 2, 3, 4, 5, 6, 7, 10, 12, 14, 15, 20, 21, 28, 30, 35, 42, 60, 70, 84, 105, 140, 210, 420}.
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Hence, when n = 1, we have

A1,1 = 0 A1,2 = 0 A1,3 = 0 A1,4 = 0
A1,5 = 0 A1,6 = 0 A1,7 = 0 A1,10 = 0
A1,12 = 0 A1,14 = 0 A1,15 = 0 A1,20 = 0
A1,21 = 0 A1,28 = 0 A1,30 = 0 A1,35 = 0
A1,42 = 0 A1,60 = 0 A1,70 = 0 A1,84 = 0
A1,105 = 0 A1,140 = 0 A1,210 = 0 A1,420 = 1

Hence, S1 = 1.
When n = 2, we have

A2,1 = 1 A2,2 = 1 A2,3 = 1 A2,4 = 1
A2,5 = 1 A2,6 = 1 A2,7 = 1 A2,10 = 1
A2,12 = 1 A2,14 = 1 A2,15 = 1 A2,20 = 1
A2,21 = 1 A2,28 = 1 A2,30 = 1 A2,35 = 1
A2,42 = 1 A2,60 = 1 A2,70 = 1 A2,84 = 1
A2,105 = 1 A2,140 = 1 A2,210 = 1

Hence, S2 = 23.
When n = 3, we have

A3,1 = 22 A3,2 = 14 A3,3 = 10 A3,4 = 6
A3,5 = 10 A3,6 = 6 A3,7 = 10 A3,10 = 6
A3,12 = 2 A3,14 = 6 A3,15 = 4 A3,20 = 2
A3,21 = 4 A3,28 = 2 A3,30 = 2 A3,35 = 4
A3,42 = 2 A3,70 = 2 A3,105 = 1

Hence, S3 = 115.
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When n = 4, we have

A4,1 = 93 A4,2 = 36 A4,3 = 21 A4,4 = 6
A4,5 = 21 A4,6 = 6 A4,7 = 21 A4,10 = 6
A4,14 = 6 A4,15 = 3 A4,21 = 3 A4,35 = 3

Hence, S4 = 225.
When n = 5, we have

A5,1 = 132 A5,2 = 24 A5,3 = 12 A5,5 = 12 A5,7 = 12

Hence, S5 = 192.
When n = 6, we have

A6,1 = 60

Hence, S6 = 60.
Thus, the total number of distinct SG sequences is 1 + 23 + 115 + 225 + 192 + 60 = 616.

2 SG Numbers

In this section, we will explore some interesting properties of such SG sequences, namely the SG numbers.

Definition 2. For each positive integer n, we define the SG number of n to be the length of the
longest SG sequence a1, · · · , ak such that a1 + · · ·+ ak = n. In this particular case, we denote σ(n) = k.
(For instance, σ(9) = 3 since the SG sequence 1,2,6 adds up to 9, whereas there cannot be an SG sequence
with length 4 that add up to 9. This is because for an SG sequence to add up to 9, its first term must
divide 9, hence it must be either 1, 3, or 9. If it’s 9, it has length of 1. If it’s 3, the only possible SG
sequence is 3,6, which has length of 2. If it’s 1, then the remaining sequence can be either 8 or 2,6, which
implies that 1,2,6 is the longest SG sequence that adds up to 9, hence σ(9) = 3.)

Here are some exercises that will help us familiarize ourselves with SG numbers.

Problem 4 (12 points, 3 points each). Find, with proof, the following values:

(a) σ(19).

Solution. Note that 19 = 1 + 2 + 4 + 12, so σ(19) ≥ 4. The least number n such that σ(n) = 5 will
be 1 + 2 + 4 + 8 + 16 = 31, so σ(19) = 4.

(b) σ(25).

Solution. The first term of the SG sequence must divide 25, so it must be either 1, 5, or 25.
If it’s 25, it has length of 1.
If it’s 5, the SG sequence can only be 4, 20.
If it’s 1, then the remaining sequence can be {24}, {2, 22}, {3, 21}, {4, 20}, {6, 18}, or {8, 16}, which
implies the longest SG sequence has a length of 3, hence σ(25) = 3.
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(c) σ(95).

Solution. Note that 95 = 1+2+4+8+16+64, so σ(95) ≥ 6. The least number n such that σ(n) = 7
will be 1 + 2 + 4 + 8 + 16 + 32 + 64 = 127, so σ(95) = 6.

(d) σ(100).

Solution. The first term of the SG sequence must divide 100, so it must be either 1, 2, 4, 5, 10, 20,
25, 50, or 100.
If it’s 100, it has a length of 1.
If it’s 50, it cannot form an SG sequence.
If it’s 25, the only possible SG sequence is {25, 75}, which has a length of 2.
If it’s 20, the only possible SG sequence is {20, 80}, which has a length of 2.
If it’s 10, then the remaining sequence can be either {90} or {30, 60}, which implies the longest SG
sequence has a length of 3.
If it’s 5, the only possible SG sequence is {5, 95}, which has a length of 2.
If it’s 4, then the longest SG sequence has a length of σ(25) = 3.
If it’s 2, then the remaining sequence can either be {98}, {14, 84}, or {14, 28, 56}, which implies the
longest sequence has a length of 4.
If it’s 1, then the next term must divide 99 and greater than 1, so it must be 3, 9, 11, 33, or 99. If
it’s 99, it has a length of 2. If it’s 33, the only possible SG sequence is {1, 33, 66}, which has a length
of 3. If it’s 11, the sequence can either be {1, 11, 88} or {1, 11, 22, 66}, which implies the longest
SG sequence has a length of 4. If it’s 9, the sequence can either be {1, 9, 90} or {1, 9, 18, 72}, which
implies the longest SG sequence has a length of 4. If it’s 3, the sequence can either be {1, 3, 96},
{1, 3, 6, 18, 72}, {1, 3, 6, 30, 60}, {1, 3, 12, 84}, or {1, 3, 24, 72}, which implies the longest SG sequence
has a length of 5, hence σ(100) = 5.

Problem 5 (4 points). Find, with proof, the value of σ(360) and all SG sequences with length σ(360)
that sum to 360.

Solution. The first term of the SG sequence must divide 360, so it must be either 1, 2, 3, 4, 5, 6, 8, 9, 10,
12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, or 360.
If it’s 360, it has a length of 1.
If it’s 180, it cannot form an SG sequence.
If it’s 120, the only possible sequence is {120, 240}, which has a length of 2.
If it’s 90, the only possible SG sequence is {90, 270}, which has a length of 2.
If it’s 72, the only possible SG sequence is {72, 288}, which has a length of 2.
If it’s 60, the only possible SG sequence is {60, 300}, which has a length of 2.
If it’s 45, the only possible SG sequence is {45, 315}, which has a length of 2.
If it’s 40, then the remaining sequence can either be {320} or {80, 240}, which implies the longest sequence
has a length of 3.
If it’s 36, then the remaining sequence can either be {324} or {108, 216}, which implies the longest sequence
has a length of 3.
If it’s 30, the only possible SG sequence is {30, 330}, which has a length of 2.
If it’s 24, then the remaining sequence can either be {48, 288} or {48, 96, 192}, which implies the longest
sequence has a length of 4.
If it’s 20, the only possible SG sequence is {20, 340}, which has a length of 2.
If it’s 18, the only possible SG sequence is {18, 342}, which has a length of 2.
If it’s 15, the only possible SG sequence is {15, 345}, which has a length of 2.
If it’s 12, the only possible SG sequence is {12, 348}, which has a length of 2.

5



If it’s 10, then the remaining sequence can either be {350}, {50, 300}, {50, 100, 200}, or {70, 280}, which
implies the longest sequence has a length of 4.
If it’s 9, then the remaining sequence can either be {351}, {27, 324}, {27, 54, 270}, {27, 81, 243}, {27, 108, 216},
or {117, 234}, which implies the longest sequence has a length of 4.
If it’s 8, the the remaining sequence can either be {352}, {16, 336}, {16, 48, 288}, {16, 48, 96, 192}, {16, 112, 224},
{32, 320}, {32, 64, 256}, or {88, 264}, which implies the longest sequence has a length of 5.
If it’s 6, the only possible SG sequence is {6, 354}, which has a length of 2.
If it’s 5, the only possible SG sequence is {5, 355}, which has a length of 2.
If it’s 4, the only possible SG seqeunce is {4, 356}, which has a length of 2.
If it’s 3, then the remaining sequence can either be {21, 336}, {21, 42, 294}, {21, 84, 252}, {51, 306}, or
{51, 102, 204}, which implies the longest sequence has a length of 4.
If it’s 2, the only possible SG sequence is {2, 358}, which has a length of 2.
If it’s 1, the only possible SG sequecne is {1, 359}, which has a length of 2.
Hence σ(360) = 5 and the sequence is {8, 16, 48, 96, 192}.

3 Properties of SG Numbers

In this section, we will prove some general properties of SG numbers.

Problem 6 (2 points). Prove that there exists a positive integer n such that there are five distinct
SG sequences with length σ(n) that sum to n.

Solution. Consider n = 25. The first term of the SG sequence must divide 25, so it must be either 1, 5, or
25.
If it’s 25, it has a length of 1.
If it’s 5, the only possible sequence is {5, 20}, which has a length of 2.
If it’s 1, then the remaining sequence can either be {24}, {2, 22}, {3, 21}, {4, 20}, {6, 18}, or {8, 16}, which
implies the longest sequence has a length of 3.
Hence, when n = 25, there are 5 distinct sequences with length σ(n).

Problem 7 (3 points). For any positive integer k, what is the smallest integer n such that σ(n) = k?

Solution. Since σ(n) = k, we have the SG sequence to be a1, a1k1, a1k1k2, · · · , a1 ×
n−1∏
i=1

ki. Hence, n =

a1 + a1k1 + a1k1k2 + · · ·+ a1 ×
n−1∏
i=1

ki. We have a1 ≥ 1 and ki ≥ 2, so

n ≥ 1 + 2 + 4 + · · ·+ 2k−1 = 2k − 1.

Problem 8 (3 points). If a positive integer n has k digits in its binary (base-2) representation with k− 1
ones and 1 zero, prove that σ(n) = k − 1.

Solution. Let the digit with zero be m, we can have

n = (

m−2∏
i=0

2i) + (

k−1∏
i=m

2i).

Since 2i+1 = 2 · 2i and 2m = 4 · 2m−2, we have n to be the sum of a SG sequence with length k − 1, so
σ(n) ≥ k − 1.
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Also, since the smallest integer n′ such that σ(n′) = k is 2k − 1, which is greater than n, so σ(n) < k.
Thus, σ(n) = k − 1.

Problem 9 (4 points). Find, with proof, the second and the third smallest integers a, b such that
σ(a) = σ(b) = 10.

Solution. The least integer n such that σ(n) = 10 is proved to be 210 − 1 = 1023, with the SG sequence
to be {1, 2, 4, 8, 16, 32, 64, 128, 256, 512}. Since we want the second and the third least values, we have to
change ki. Because ki are all 2 in the case with least value, we should change one ki to 3. If we change ki
to 3, all values of a after ki will increase, so we should change k9 to 3. In this way, the sequence becomes
{1, 2, 4, 8, 16, 32, 64, 128, 256, 768}, which sums up to 1279.
Similarly, to find the third least value, it could either change k8 to 3 or change k9 to 4. Changing k8 to 3
results in a sum of 1407 and changing k9 to 4 results in a sum of 1535, so the third least value is 1407.

Problem 10

(a) Prove that for all integers a, b > 1, σ(ab+ 1) > σ(a).

Solution. Let σ(a) = n, we have
a = a1 + a2 + · · ·+ an.

Then, we have
ab+ 1 = 1 + a1b+ a2b+ · · ·+ anb

Since ai+1 = kiai, we have ai+1b = ki(aib), so {1, a1b, a2b, · · · , anb} is a valid SG sequence with
length n+ 1. Hence, σ(ab+ 1) > n.

(b) Prove that for all integers a, b > 1, σ(ab) ≥ σ(a). Provide an example where the equality holds.

Solution. Similarly, let σ(a) = n, we have

a = a1 + a2 + · · ·+ an.

Then, we have
ab = a1b+ a2b+ · · ·+ anb

Since ai+1 = kiai, we have ai+1b = ki(aib), so {a1b, a2b, · · · , anb} is a valid SG sequence with length
n. Hence, σ(ab) ≥ n.
When a = 3, b = 2, we have σ(a) = σ(ab) = 2.

Problem 11 (5 points). Find the largest integer n such that σ(n) = 2, and prove that any integer greater
than n must have SG number of greater than 2.

Solution. Let the integer greater than 24 be n.
Consider the case when n is odd, then n = 2k + 1. For k ≥ 3, σ(k) ≥ 2 since k = 1+ (k − 1). Then, since
σ(2k + 1) > σ(k), we have σ(2k + 1) > 2.

Consider the case when n is even.
Consider n = 16k, we have

n = k + 3k + 12k

so σ(n) ≥ 3. Then n is not divisible by 16.

Consider n = 8k where k is odd.
Let k = 2a+ 1. Since when a ≥ 3, σ(a) ≥ 2, so σ(2a+ 1) > σ(a) ≥ 2. Hence, σ(k) > 3 for k ≥ 7.
When k = 5, we have n = 40. Since 40 = 1 + 3 + 6 + 30 = 1 + 3 + 9 + 27, so σ(40) = 4 > 2.
Therefore, σ(n) ≥ 3.
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Consider n = 8k + 2 where k ≥ 3, we have

n = 2 + 2k + 6k

so σ(n) ≥ 3.

Consider n = 8k + 4 where k ≥ 3, we have

n = 4 + 8 + 8(k − 1)

so σ(n) ≥ 3.

Consider n = 8k + 6 where k ≥ 3, we have

8k + 6 = 2 + 4 + 8k

so σ(n) ≥ 3.

Hence, any integer greater than 24 must have SG number of greater than 2.

The following two problems are only worth one point each. This is not because the following problems
are necessarily any easier than the others. In fact it’s rather the opposite. We strongly advise that the
students work on previous problems first and make sure they have everything correct before they dive into
the last two.

Problem 12 (1 point). Prove that for all n ≥ 3, the number 24n has SG number of greater than
3.

Solution. Consider n = 3k where k ≥ 1, we have

24n = 72k = 2k + 10k + 20k + 40k

so σ(24n) ≥ 4.

Consider n = 3k + 1 where k ≥ 1, we have

24n = 72k + 24 = 6 + 18 + 18k + 54k

so σ(24n) ≥ 4 for k ≥ 2. When k = 1, we have 24n = 96 = 1 + 5 + 10 + 20 + 60. Hence, σ(24n) ≥ 4.

Consider n = 3k + 2 where k ≥ 2, we have

24n = 72k + 48 = 3 + 9 + 36 + 72k

so σ(24n) ≥ 4.

Hence, we have σ(24n) > 3 for all n ≥ 3.

Problem 13 (1 point). Prove that for all n > 48 such that 24 does not divide n, σ(n) > 3.

Solution. Consider the case when n is odd, then n = 2k + 1 where k ≥ 24.
When k = 24, n = 49 = 1 + 3 + 9 + 36, so σ(49) = 4 > 3.
When k > 24, we have σ(k) ≥ 3, so σ(2k + 1) > σ(k) ≥ 3. Then σ(2k + 1) > 3.

8



Consider the case when n is even.
Consider n = 12k where k is odd, then k = 2a+ 1 where a ≥ 2. Hence, n = 24a+ 12, so we have

n = 4 + 8 + 24 + 24(a− 1)

so σ(n) ≥ 4 for a > 2. When a = 2, we have n = 60 = 4 + 8 + 16 + 32. Hence, σ(n) ≥ 4.

Consider n = 12k + 2 where k ≥ 4.
Consider the case when k is odd, then k = 2a+ 1, so we have

n = 24a+ 14 = 2 + 4 + 8 + 24a

so σ(n) ≥ 4.
Consider the case when k is even, then k = 2a where a ≥ 2.
Consider the case when a is odd, then a = 2b+ 1 where b ≥ 1, so we have

n = 48b+ 26 = 2 + 8 + 16 + 48b

so σ(n) ≥ 4.
Consider the case when a is even, then a = 2b where b ≥ 1.
Consider b = 3c where c ≥ 1, we have

n = 144c+ 2 = 2 + 4c+ 20c+ 120c

so σ(n) ≥ 4.
Consider b = 3c+ 1 where c ≥ 0, we have

n = 144c+ 50 = 2 + 12 + 36 + 144c

so σ(n) ≥ 4 for c ≥ 1. When c = 0, we have n = 50 = 1 + 7 + 14 + 28. Hence, σ(n) ≥ 4.
Consider b = 3c+ 2 where c ≥ 0, we have

n = 144c+ 98 = 2 + 6 + 18 + 72 + 144c

so σ(n) ≥ 4.
Hence, we have σ(n) ≥ 4.

Consider n = 12k + 4 where k ≥ 4, we have

12k + 4 = 1 + 3 + 12 + 12(k − 1)

so σ(n) ≥ 4.

Consider n = 12k + 6 where k ≥ 4, we have

12k + 6 = 2 + 4 + 12 + 12(k − 1)

so σ(n) ≥ 4.

Consider n = 12k + 8 where k ≥ 4, we have

12k + 8 = 2 + 6 + 12 + 12(k − 1)
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so σ(n) ≥ 4.

Consider 12k + 10 where k ≥ 4, we have

12k + 10 = 1 + 3 + 6 + 12k

so σ(n) ≥ 4.

Hence, we have σ(n) > 3 for all n > 48 such that 24 does not divide n.
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