
1 Individual Problems

Problem 1.1. Four witches are riding their brooms around a circle with circumference 10m.
They are standing at the same spot, and then they all start to ride clockwise with the speed
of 1, 2, 3, and 4 m/s, respectively. Assume that they stop at the time when every pair of
witches has met for at least two times (the first position before they start counts as one
time). What is the total distance all the four witches have travelled?

Solution. 100.

We can see that they will stop when the witches with speed 3 and 4 meet for the second
time. If they meet the second time after s seconds, then 4s = 3s+ 10, so s = 10. Then, the
total distance traveled is 10 · (1 + 2 + 3 + 4) = 100.

Problem 1.2. Suppose A is an equilateral triangle, O is its inscribed circle, and B is another
equilateral triangle inscribed in O. Denote the area of triangle T as [T ]. Evaluate [A]

[B]
.

Solution. 4.

Suppose A has side length a. Since O is the inscribed circle of A, the radius r of O
is a

2
/
√
3 = a

2
√
3
. Since B is an equilateral triangle inscribed in O, its side length b satisfies

b =
√
3r. Hence, b = a

2
, so [A]

[B]
= 22 = 4.
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Problem 1.3. Tim has bought a lot of candies for Halloween, but unfortunately, he forgot
the exact number of candies he has. He only remembers that it’s an even number less than
2020. As Tim tries to put the candies into his unlimited supply of boxes, he finds that there
will be 1 candy left if he puts seven in each box, 6 left if he puts eleven in each box, and 3
left if he puts thirteen in each box. Given the above information, find the total number of
candies Tim has bought.

Solution. 666

Let x be the total number of candies that Tim has bought. Then, we have:

x ≡ 0 mod 2,

x ≡ 1 mod 7,

x ≡ 6 mod 11,

x ≡ 3 mod 13.

From the last two, we must have x ≡ 3 + 7 · 13 ≡ 6 + 8 · 11 = 94 mod 143. Combining with
the first equation gives us x ≡ 94 mod 286, and combining with the second equation gives
us x ≡ 94 + 2 · 286 = 1 + 95 · 7 ≡ 666 mod (2 · 7 · 11 · 13 = 1502). Then, since 666 is the
only integer less than 2020 that is congruent to 666 mod 2002, we have x = 666.

Problem 1.4. Let f(n) be a function defined on positive integers n such that f(1) = 0, and
f(p) = 1 for all prime numbers p, and

f(mn) = nf(m) +mf(n)

for all positive integers m and n. Let

n = 277945762500 = 22335577.

Compute the value of f(n)
n

.

Solution. 4.

Let us consider the general case, where n = pe11 pe22 · · · pekk . Let S =
∑k

i=1 ei. We
claim that f(n) is the sum of all factors α of n such the sum of the exponents in the prime
factorization of α is equal to S−1. For example, f(22 ·3 ·5) = 2 ·2 ·3+2 ·2 ·5+2 ·3 ·5+2 ·3 ·5.
We leave the induction proof as an exercise to the reader. Then, we can rewrite f(n) as

f(n) =
n

p1
+ · · ·+ n

p1︸ ︷︷ ︸
e1 times

+ · · ·+ n

pk
+ · · ·+ n

pk︸ ︷︷ ︸
ek times

= n

k∑
i=1

ei
pi
.

Therefore, in this case, we have f(n) = n(2
2
+ 3

3
+ 5

5
+ 7

7
) = 4n, so f(n)

n
= 4.
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Problem 1.5. Compute the only positive integer value of 404
r2−4

, where r is a rational number.

Solution. 2500.

Let r = a
b
, where a and b are relatively prime integers. Then, we have

404

r2 − 4
=

404
a2

b2
− 4

=
404b2

a2 − 4b2
=

404b2

(a− 2b)(a+ 2b)
.

Since the greatest common factor of a, b is 1, we know that the greatest common factor of b
and a−2b as well as a+2b is also 1. Therefore, both a−2b and a+2b must be factors of 404
in order for the fraction to be an integer, and no factors from either term in the denominator
may be drawn from b2.

Since 404 = 22 · 101, we can check all possibilities for the values of a− 2b and a+2b. In
particular, we check cases where (a− 2b)(a+ 2b) = 4, 101, and 404, and solve for integers a
and b. Then, we see that the only solution that works is a− 2b = 1 and a+2b = 101, giving
us a = 51 and b = 25, so r = 51

25
. Then, plugging this back into the original expression gives

us
404

r2 − 4
= 404 · 625

101
= 2500.

Problem 1.6. Let α = 3 +
√
10.. If
∞∏
k=1

(
1 +

5α + 1

αk + α

)
= m+

√
n,

where m and n are integers, find 10m+ n.

Solution. 50.

The key observation here is α2 = 6α+1. Using this fact, we can simplify the expression:
∞∏
k=1

(
1 +

5α + 1

αk + α

)
=

∞∏
k=1

(
αk + 6α + 1

αk + α

)

=
∞∏
k=1

(
αk + α2

αk + α

)

=
∞∏
k=0

(
αk + α

αk + 1

)
.

The product of the first n+ 1 terms of this product is

(1 + α)

(
αn

αn + 1

)
,

and as n grows, the fraction grows infinitely close to 1, so the product is equal to

α + 1 = 4 +
√
10.

Therefore, 10m+ n = 40 + 10 = 50.
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Problem 1.7. Charlie is watching a spider in the center of a hexagonal web of side length 4.
The web also consists of threads that form equilateral triangles of side length 1 that perfectly
tile the hexagon. Each minute, the spider moves unit distance along one thread. If m

n
is the

probability, in lowest terms, that after four minutes the spider is either at the edge of her
web or in the center, find the value of m+ n.

Solution. 241.

We note that at each move the spider either moves closer to the edge, maintains its
distance, or moves away from the edge. For the spider to reach the edge, it needs to move
forwards four times. Not all forward moves are the same, as some forwards moves allows the
spider to go to three possible forward moves while some forward moves only allow the spider
to go to two possible forward moves. We will call these moves f3 and f2 for convenience. We
see that by doing some casework that

P(f → f3 → f3 → f3) = 1 · 1
6
· 1
6
· 1
2
=

1

72
,

P(f → f3 → f2 → f2) = 1 · 1
6
· 1
3
· 1
3
=

1

54
,

P(f → f2 → f2 → f2) = 1 · 1
3
· 1
3
· 1
3
=

1

27
.

Now, we calculate the probability that the spider ends up back at the center. It can do so
by moving back twice (after being forced to move forwards). Or moving to the side twice
then moving back. We have that

P(f → b → f → b) = 1 · 1
6
· 1 · 1

6
=

1

36
,

P(f → s → s → b) = 1 · 1
3
· 1
3
· 1
6
=

1

54
.

Adding all these cases together gives us the total probability of 25
216

, so the answer is 25+216 =
241.

Problem 1.8. Let ABC be a triangle with AB = 10, AC = 12, and ω its circumcircle. Let

F and G be points on AC such that AF = 2, FG = 6, and GC = 4, and let
−−→
BF and

−−→
BG

intersect ω at D and E, respectively. Given that AC and DE are parallel, what is the square
of the length of BC?

Solution. 250.

Denote x = BC. Since ACED is an isosceles trapezoid, we may put y = AE = CD.
Finally, let p = BF , q = DF , u = BG, and v = GE. Note that ∠BAC and ∠BDC are
inscribed in the same circle, so they have the same measure. Therefore, �ABF and �DCF
are similar, so

DF

AF
=

CD

AB
=

CF

BF
=⇒ q

2
=

y

10
=

10

p
.
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A

B
C

D

EG

F

Similarly (pun intended), we have that �BCG and �AEG are similar, so we have

AE

BC
=

EG

CG
=

AG

BG
=⇒ y

x
=

v

4
=

8

u
.

Lastly, since AC‖DE, we have
p

q
=

u

v
,

so combining all of the above gives us

p

q
=

100
y
y
5

=

8x
y

4y
x

,

so 500 = 2x2, and x2 = 250.

Problem 1.9. Two blue devils and 4 angels go trick-or-treating. They randomly split up
into 3 non-empty groups. Let p be the probability that in at least one of these groups, the
number of angels is nonzero and no more than the number of devils in that group. If p = m

n

in lowest terms, compute m+ n.

Solution. 76.

There are three ways to partition 6 into 3 groups: (4, 1, 1), (3, 2, 1), and (2, 2, 2). In the
first case, there are a total of

(
6
2

)
= 15 ways to make the groups. To satisfy the criteria,

the two devils must be in the group of 4, hence
(
4
2

)
= 6 groupings. In the second case,

there are a total of 6 · (5
2

)
= 60 ways to make the groups. To satisfy the criteria, either

the two devils are in the group of 3, or there is exactly one devil in the group of 2. There

are 4 · (3
2

)
+ 2 · 4 · (4

1

)
= 44 groupings. In the last case, there are

(62)(
4
2)

3!
= 15 total ways

to make the groups. To satisfy the criteria, the two devils cannot be in the same group,

giving us
(42)
2!

= 3 bad groupings, so 12 groups that work. This gives us a total probability
of 6+44+12

15+60+15
= 62

90
= 31

45
, so the answer is 31 + 45 = 76.
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Problem 1.10. We know that

222000 = 4569878 . . . 229376︸ ︷︷ ︸
6623 digits

.

For how many positive integers n < 22000 is it also true that the first digit of 2n is 4?

Solution. 2132

If the first digit of a k-digit number N is c, then c10k ≤ N < (c+ 1)10k−1. This implies
that 2c10k−1 ≤ 2N < (2c + 2)10k−1, i.e. the first digit of 2N is at least the first digit of
2c and at most the first digit of 2c + 1. We apply this to the first digits of powers of two:
Having a power of two with the first digit equal to 1, there are these five possibilities for the
first digits of the following powers of two: (1) 1,2,4,8,1; (2) 1,2,4,9,1; (3) 1,2,5,1; (4) 1,3,6,1;
(5) 1,3,7,1.

Let k be a non-negative integer such that 2k begins with 1 and has d digits. Then, there
is a unique power of two beginning with 1 and having d + 1 digits, and it is either 2k+3 (if
we are in one of the situations (3), (4), (5) above) or 2k+4 (given that the case (1) or (2)
occurs). As 20 (having 1 digit) and 221998 (having 6623 digits) begin with 1, we can compute
how many times (1) or (2) occurs when computing successive powers of two: It is exactly

21998− 3 · 6622 = 2132 times.

Finally, observe that the case (1) and (2) are precisely those giving rise to a power of
two starting with 4, therefore there are exactly 2132 such numbers in the given range.
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