
Problem 2.1. At Duke, 1
2
of the students like lacrosse, 3

4
like football, and 7

8
like basketball.

Let p be the proportion of students who like at least all three of these sports and let q be
the difference between the maximum and minimum possible values of p. If q is written as m

n

in lowest terms, find the value of m+ n.

Solution. 11.

The maximum occurs when the 1
2
that like lacrosse alsoo like football and basketball,

so the maximum is 1
2
. To find the minimum, note that the minimum amount that like both

4
, so we want the minimal overlap between this 1

4
and the 7

8
lacrosse and football is 1 basketball
lovers, which is 1

8
of the student population. Thus, q = 1− 1

8
= 3

8
, giving the final answer of

11.

Problem 2.2. A dukie word is a 10-letter word, each letter is one of the four D, U , K,
E such that there are four consecutive letters in that word forming the letter DUKE in
this order. For example, DUDKDUKEEK is a dukie word, but DUEDKUKEDE is not.
How many different dukie words can we construct in total?

Solution. 28576

First, we count the number of dukie words with at least one DUKE present. We can see
that there are 10−4+1 = 7 possible positions for the word DUKE, and for the remaining 6
positions, there are 46 ways to choose the letter, so there are 7 · 46 dukie words with at least
one DUKE present. Now we count the number of dukie words with two DUKE presences.
We can treat the word DUKE as one ”super letter”, so for a word with 2 DUKEs present,

)cthere are 2 remaining positions, each of whi h have 4 letter choices. Then, we have two
letters and two super letters, giving us 42 · (4

2 ( )dukie words with 2 DUKEs present. Thus,

the total number of dukie words is 7 · 46 − 42 · 4
2

= 28576.



Problem 2.3. Rectangle ABCD has sides AB = 8, BC = 6. �AEC is an isosceles right
triangle with hypotenuse AC and E above AC. �BFD is an isosceles right triangle with
hypotenuse BD and F below BD. Find the area of BCFE.

Solution. 7

A B

CD

E

F

Apply Ptolemy’s Theorem on AEBC to get (10)(EB)+(5
√
2)(6) = (5

√
2)(8), so EB =√

2. Applying Ptolemy’s again on EBCF gives us (EF )(6)+(
√

(2))2 = (5
√
2)2, so EF = 8.

Since EBCF is isosceles, the distance from E to AB is 1, so by the Pythagorean Theorem,
the height is 1. The area is therefore 6+8

2
· 1 = 7.

Problem 2.4. Chris is playing with 6 pumpkins. He decides to cut each pumpkin in half
horizontally into a top half and a bottom half. He then pairs each top-half pumpkin with
a bottom-half pumpkin, so that he ends up having six “recombinant pumpkins”. In how
many ways can he pair them so that only one of the six top-half pumpkins is paired with its
original bottom-half pumpkin?

Solution. 264.

There are 6 ways to choose which of the 6 pumpkins is restored correctly. The other
five are deranged (all halves paired incorrectly). If Dn denotes the number of derangements
for n pairs of objects, we know that Dn = (n− 1)(Dn−1 +Dn−2), where D1 = 0 and D2 = 1
(the proof of this is left as an exercise to the reader). Then, we have D5 = 44, so there
are 6 · 44 = 264 ways to pair the pumpkins so that only one of the pumpkins is correctly
restored.
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Problem 2.5. Matt comes to a pumpkin farm to pick 3 pumpkins. He picks the pumpkins
randomly from a total of 30 pumpkins. Every pumpkin weighs an integer value between 7
to 16 (including 7 and 16) pounds, and there’re 3 pumpkins for each integer weight between
7 to 16. Matt hopes the weight of the 3 pumpkins he picks to form the length of the sides
of a triangle. Let m

n
be the probability, in lowewst terms, that Matt will get what he hopes

for. Find the value of m+ n

Solution. 8003.

We compute the complement: the three weights do not form a triangle. The triplets for
which this happens are: (7, 7, 14), (7, 7, 15), (7, 7, 16), (7, 8, 15), (7, 8, 16), (7, 9, 16), (8, 8, 16).
For the triplets of the form (a, a, b), there are

(
3
2

) · 3 = 9 combinations of the pumpkins,
and for the triplets of the form (a, b, c), there are 33 = 27 combinations of the pumpkins.
Therefore, the complement is 9 · 4 + 27 · 3 = 117, so the desired probability is

1− 117(
30
3

) =
3943

4060
.

Hence, the answer is 3943 + 4060 = 8003.

Problem 2.6. Let a, b, c, d be distinct complex numbers such that |a| = |b| = |c| = |d| = 3
and |a+ b+ c+ d| = 8. Find |abc+ abd+ acd+ bcd|.

Solution. 72.

Note that

|abc+ abd+ acd+ bcd| = |abcd|
∣∣∣∣1a +

1

b
+

1

c
+

1

d

∣∣∣∣ ,
since magnitudes are distributive over multiplication. The trick is to express 1

z
as z

|z|2 , and
to note that |z| = |z|. Then, we have:

|abcd|
∣∣∣∣1a +

1

b
+

1

c
+

1

d

∣∣∣∣ = |a||b||c||d|
∣∣∣∣ a

|a|2 +
b

|b|2 +
c

|c|2 +
d

|d|2
∣∣∣∣

= 34
∣∣∣∣a9 +

b

9
+

c

9
+

d

9

∣∣∣∣
= 9|a+ b+ c+ d|
= 9

∣∣a+ b+ c+ d
∣∣

= 9|(a+ b+ c+ d)| = 9 · 8 = 72.

Problem 2.7. A board contains the integers 1, 2, . . . , 10. Anna repeatedly erases two num-
bers a and b and replaces it with a+ b, gaining ab(a+ b) lollipops in the process. She stops
when there is only one number left in the board. Assuming Anna uses the best strategy to
get the maximum number of lollipops, how many lollipops will she have?

8



Solution. 54450.

After replacing a and b with a + b, Anna will gain ab(a + b) = (a+b)3−a3−b3
3

lollipops.
Therefore, when the numbers a + b and c and replaced with a + b + c, Anna will gain
(a+b+c)3−(a+b)3−c3

3
, and combined with the first quantity, results in an overall net gain of

(a+b+c)3−a3−b3−c3
3

. Thus, we can see that at the end, Anna will have

(1 + 2 + · · ·+ 10)3 − 13 − 23 − · · · − 103

3
= 54450

lollipops.

Problem 2.8. Ajay and Joey are playing a card game. Ajay has cards labelled 2, 4, 6, 8, and
10, and Joey has cards labelled 1, 3, 5, 7, 9. Each of them takes a hand of 4 random cards
and picks one to play. If one of the cards is at least twice as big as the other, whoever played
the smaller card wins. Otherwise, the larger card wins. Ajay and Joey have big brains, so
they play perfectly. If m

n
is the probability, in lowest terms, that Joey wins, find m+ n.

Solution. 19.

First note that 1 beats everything, so if Joey has it in his hand, then he will always play
it and win. Thus, we just need to consider the case when Joey doesn’t draw the 1. Also
note that because of this, Ajay will play assuming Joey doesn’t draw the 1, because it is the
only way that Ajay can win.

Note that 3 beats every card except the 4, while 9 beats only beats a 6 and 8, so playing
the 9 is strictly worse than playing the 3. Thus, Joey will never play the 9, and Ajay knows
this, so Ajay will play assuming Joey will play one of 3, 5, or 7.

Now, we look at Ajay’s options. Both 2 and 8 beat 5 and 7, while 6 and 10 only beat 5
and 7, respectively. Thus, Ajay will never play 6 and 10, since they are strictly worse than
both 2 and 8. We can further simplify by noticing that 5 and 7 are equivalent for Joey, since
both beat 4 but lose to 2 and 8, and 2 and 8 are equivalent for Ajay.

Thus, if we let p be the probability that Ajay chooses 4 when he has a 4 in his hand, we
have that overall the probability of him playing 4 is .8 ·p, so the probability of playing 2 or 8
is 1− 0.8p. To ensure that Joey doesn’t gain an advantage, these two must be equal, so we
set 0.8p = 1− 0.8p, or p = 5

8
, and to ensure that Ajay doesn’t gain an advantage, Joey picks

3 with probability 1
2
and 5 or 7 with probability 1

2
. Therefore, Joey will win with probability

4

5
+

1

5
· 1
2
=

9

10
,

so our final answer is 9 + 10 = 19.

Problem 2.9. Let ABCDEFGHI be a regular nonagon with circumcircle ω and center O.
Let M be the midpoint of the shorter arc AB of ω, P be the midpoint of MO, and N be
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the midpoint of BC. Let lines OC and PN intersect at Q. Find the measure of ∠NQC in
degrees.

Solution. 10.

A

B

C
O Q

P
N

Mω

Since C and M lie on ω, we have OC = OM , and ∠MOC = ∠MOB +∠BOC = 20 +
40 = 60, so �OCM is equilateral. Then, since P is the midpoint of OM , we have ∠OPC =
90◦. Since ∠ONC = 90◦ because N is the midpoint of BC, we have that quadrilateral
OCNP is cyclic. Furthermore, ∠OCN = 180◦ − 20◦ − 90◦ = 70◦, so ∠OPN = 180◦ −
∠OCN = 110◦ because OCNP is cyclic. Therefore, using �OQP , we have

∠NQC = ∠PQO = 180◦ − ∠POQ− ∠QPO = 10◦.

Problem 2.10. In a 30× 30 square table, every square contains either a kit-kat or an oreo.
Let T be the number of triples (s1, s2, s3) of squares such that s1 and s2 are in the same row,
and s2 and s3 are in the same column, with s1 and s3 containing kit-kats and s2 containing
an oreo. Find the maximum value of T .

Solution. 120000.

We claim that in an n× n square table there are at most 4n2

27
such triples.

Let row i and column j contain ai and bj kit-kats respectively, and let R be the set of red
cells. For every red cell (i, j) there are aibj admissible triples (C1, C2, C3) with C2 = (i, j),
therefore

T =
∑

(i,j)∈R
aibj.

We use the inequality 2ab ≤ a2 + b2 to obtain

T ≤ 1

2

∑
(i,j)∈R

(a2i + b2j) =
1

2

n∑
i=1

(n− ai)a
2
i +

1

2

n∑
j=1

(n− bj)b
2
j .
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This is because there are n− ai red cells in row i and n− bj red cells in column j. Now we
maximize the right-hand side.

By the AM-GM inequality we have

(n− x)x2 =
1

2
(2n− 2x) · x · x ≤ 1

2

(
2n

3

)3

=
4n3

27
,

with equality if and only if x = 2n
3
. By putting everything together, we get

T ≤ n

2

4n3

27
+

n

2

4n3

27
=

4n4

27
.

If n = 30, then any coloring of the square table with x = 2n
3

= 20 kit-kats in each
row and column attains the maximum as all inequalities in the previous argument become
equalities. For example, let a cell (i, j) contain a kit-kat if i − j ≡ 1, 2, . . . , 20 (mod 30),
and red otherwise.

Therefore the maximum value T can attain is T = 4·304
27

= 120000.
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