Problems 1-2		Name
Time Limit: 10 minutes		Team
Problem 1 Let f be a function s find $f(15)$.	uch that $f(x+y) = f(x) + f(x)$	(y) - 1 for all reals x, y . If $f(3) = 2$,
where at most one pair of adjacen	t numbers in the circle have are either both even or both	the same parity? Two numbers are odd. (Rotations of an arrangement
ANSWER TO PROBLEM 1		ANSWER TO PROBLEM 2

Problems 3-4	Name
Time Limit: 10 minutes	Team
Problem 3 The sum of the 80 smallest post for some positive integer m . Find m .	sitive solutions to the equation $\sin x = \cos 2x$ is $m\pi$,
	utions of the following equation can be expressed as livisible by the square of any prime. Find $a+b+c$.
(3z+1)(4z+1)	1)(6z+1)(12z+1) = 2
ANSWER TO PROBLEM 3	ANSWER TO PROBLEM 4

Problems 5-6		Name
Time Limit: 10 minutes		Team
Problem 5 Let n be the largest in a and b are positive integers and b	nteger such that 17^n divides $a < 2023$. Find $a + b$. (Note	$\frac{(2023^2)!}{2023^2023}$. Write $n = 2023a + b$, where that $2023 = 7 \times 17^2$.)
	has exactly 2 cards. Then, E	60. Bob randomly distributes the sob discards the smaller card within ted value of the sum?
ANSWER TO PROBLEM 5		ANSWER TO PROBLEM 6

Problems 7-8	Name
Time Limit: 10 minutes	Team

Problem 7 There are six mirrors of the same length arranged into a regular hexagon, where the faces are put inwards. A beam of light passed through A, hits the mirrors and reflects for exactly 2 times, then goes back to A again. Denote S, T the first and the second time that the light hits the mirrors (as shown in the figure).

What is the ratio of $\frac{DT}{ET}$?

Problem 8 In a 3×3 grid, label each square with integers from 1 to 9 distinctly such that the number in each square is always smaller than both the numbers in the squares directly above it and directly to the left of it. Find the total number of all such possible labelings.

ANSWER TO PROBLEM 7	ANSWER TO PROBLEM 8

Problems 9-10		Name
Time Limit: 10 minutes		Team
Problem 9 A perfect number is a itself. The first three perfect number divisor (including itself) of the four	pers are 6, 28, and 496. Find	
Problem 10 Define $f_n(k)$ to be to $f_5(5) = 3$ since $5 = 00101_2$ is five of		
	$S = \sum_{k=0}^{2^5 - 1} (-1)^{f_5(k)} 2^k$	
What are the last two digits of S ?		
ANSWER TO PROBLEM 9	A	ANSWER TO PROBLEM 10