Guts Round - Set 1

- 1. [1] How many ways can you arrange the letters DUKEUNIVERSITY so that the two U's are not next to each other? The answer can be expressed as $\frac{a!}{8} \frac{b!}{4}$. Find a + b.
- 2. [1] Compute $(\log 2000)^{\log \log 200} (\log 200)^{\log \log 2000}$ where all logarithms are base 10.
- 3. [1] Define sequence a_n such that $a_n = na_{n-1}$ and $a_1 = 1$. What is the largest power of 3 that divides a_{2024} ?

PROBLEM 1:	PROBLEM 2:	PROBLEM 3:
	TEAM NAME:	
Guts Round	- Set 2	
1. [2] Let $f(n)$ be	a recursive function defined as follows:	
	$f(n) = \begin{cases} n, \\ f(n-1) + 2 \cdot f(n-2), \end{cases}$	$ if n \le 2 \\ if n > 2 $
Compute $\log_2(f)$	f(2024))	
while Brandon	d Brandon roll two standard dice. Andrew adds the two numbers. Given that the prograndon's sum can be written in simplest for	obability that Andrew's product is
let S_n be the sq Let each region	square. Let C_1 be the circle inscribed in equare inscribed inside of C_{n-1} and let C_n be contained in S_n but not C_n be shaded. If a subability that it lands in the shaded region at is $a + b + c$?	be the circle inscribed inside of S_n . a dart is thrown at S_1 uniformly at
PROBLEM 1:	PROBLEM 2:	PROBLEM 3:

TEAM NAME: ____

Guts Round - Set 3

- 1. [3] Let (k,n) be a solution to the equation: $2024^k 3n = 1$ such that $\frac{n+1}{k+1}$ is an integer. Find the largest possible value of $\frac{k+n}{3}$.
- 2. [3] Let a, b, and c be the solutions to the equation $x^3 11x^2 + 56x 6$. Compute the sum of all possible values of:

 $\left(1 + \frac{a^2}{b^2}\right)\left(1 + \frac{b^2}{c^2}\right)\left(1 + \frac{c^2}{a^2}\right)$

3. [3] What is the area of the shape in the complex plane formed by connecting all points x satisfying $x^3-(i\sqrt{3}+1)x^2+(i\sqrt{3}-1)x+1=0$ and y satisfying $y^4=1$? The answer can be expressed $\frac{a+\sqrt{b}}{c}$, where b is square-free. Find a+b+c.

PROBLEM 1:

PROBLEM 2: _____

PROBLEM 3:

TEAM NAME:

Guts Round - Set 4

- 1. [4] Quadrilateral ABCD is inscribed in a circle such that AB = BC = 6, AD = 4, and $\angle CDA = 120^{\circ}$. The length BD can be expressed as $a\sqrt{b} + c$. Find a + b + c
- 2. [4] Suppose a, b, c, d are the zeroes of $x^4 3x^3 33x^2 + 79x 36$. The absolute value of the cyclic sum:

 $\sum_{cvc} \frac{1}{abc - (d-1)^2 + 36}$

can be expressed as $\frac{m}{n}$, where m and n are relatively prime positive integers. Find m+n. We define the cyclic sum to be the sum of the terms across all 4 cyclic permutations of assigning the roots to a, b, c, d (i.e. (a, b, c, d), (b, c, d, a), (c, d, a, b), (d, a, b, c)).

3. [4] A container holds a certain number of identical balls. The ratio of the total volume of the balls to the volume of the empty space in the container is 1:k, where k is an integer greater than 1. After removing a prime number of balls, the ratio of the total volume of the remaining balls to the empty space becomes $1:k^2$. Find the initial number of balls in the container.

PROBLEM 1:

PROBLEM 2:

PROBLEM 3:

TEAM NAME:

Guts Round - Set 5

- 1. [5] Find the sum of all possible integer values of n such that $\frac{9n+10}{4n+17}$ is the square of a rational number.
- 2. [5] Compute the number of ordered triples of positive integers (a, b, c) that satisfy

$$\left(1 + \frac{1}{a}\right)\left(1 + \frac{1}{b}\right)\left(1 + \frac{1}{c}\right) = 2$$

3. **[5**] Let

$$f(n) = \begin{cases} x/2, & \text{if } n \text{ even} \\ x+1, & \text{if } n \text{ odd} \end{cases}$$

Let g(x) be the minimum k such that $f^k(x) = f(f(...f(x))) = 1$. Note that g(1) = 0 by convention). Compute $\sum_{x=1}^{64} g(x)$.

PROBLEM 1:	PROBLEM 2:	PROBLEM 3:
\mathbf{T}	EAM NAME:	

Guts Round - Set 6 (Estimation)

- 1. Annually, the amount of energy that is used to power Duke could be used to power how many homes?
- 2. How much weight, in pounds, do all the books in Duke's Libraries weight?
- 3. How many characters of LaTeX are contained in the Overleaf document with this year's DMM problems?

PROBLEM 1:	PROBLEM 2:	PROBLEM 3:
	TEAM NAME.	