Problems 1-2	Name
Time Limit: 10 minutes	Team
two of the integers and replaces them with t	written on the board. Every second a computer selects heir average. Eventually, only one number is left: 11. of the minimum of the five integers at the beginning,
points define $\binom{8}{2}$ line segments. Suppose we	O), $(0,1)$, $(0,2)$, $(0,3)$, $(1,0)$, $(1,1)$, $(1,2)$, $(1,3)$. These e choose two of these segments uniformly at random. It is elines (if an intersection exists) be x' . The probability seed as $\frac{a}{b}$, where $\gcd(a,b)=1$. Find $a+b$.
ANSWER TO PROBLEM 1	ANSWER TO PROBLEM 2

Problems 3-4		Name
Time Limit: 10 minutes		Team
Problem 3 Let $\triangle ABC$ be a tria $AC = 8$, $AD = 5$, and $AB = 6$. We	9	such that the area of $\triangle ABC$ is 12,
NOTICE: Problem 3 was void this problem.	led in-contest. All contes	tants were awarded 1 point for
choose 210 of the tiles to paint re the grid to the top right tile of th a "path" is a sequence of tiles suc diagonally) to the tile preceding it	d, and then Harry will pick e grid based on Chris's select th that every tile is adjacent c. Chris's goal is to maximize mimize the same quantity.	100 square grid of tiles. Chris will a path from the bottom left tile of tion. For the sake of this problem, (horizontally or vertically, but not the number of red tiles in Harry's given that Chris picks the red tiles ath can contain?
ANSWER TO PROBLEM 3		ANSWER TO PROBLEM 4

Problems 5-6		Name
Time Limit: 10 minutes		Team
Problem 5 How positive integers $a \neq 0$ and $c \neq 0$ such that abc and		sarily distinct digits abc satisfying
Problem 6 Given that there exists $64a^2d^2 = 31$ and $ac + bd = \frac{\sqrt{31}}{4}$, co	st real numbers a, b, c, d sumpute $\frac{bc}{ad}$.	ch that $4b^2c^2 + 16b^2d^2 + 16a^2c^2 +$
ANGWED TO DOOD EM F		ANGWED TO DOOD EM C
ANSWER TO PROBLEM 5		ANSWER TO PROBLEM 6

Problems 7-8	Name
Time Limit: 10 minutes	Team

Problem 7 Consider the following partially filled-in grid. A *galactic* grid is a grid such that, for any pair of rows and pair of columns, the four squares determined by their intersections have an even sum. How many ways are there to fill in the blank entries in the following grid with either a 0 or 1 such that the grid is *galactic*?

	0	1
1	0	
	1	0
0		

Problem 8 Find the value of

$$\sum_{m=0}^{6} \sum_{n=0}^{6} {12 - m - n \choose 6 - m} {m + n \choose m}$$

ANSWER TO PROBLEM 7	ANSWER TO PROBLEM 8	

Name _____

Problems 9-10

Time Limit: 10 minutes	Team
Problem 9 Let $f(x) = \frac{x}{\sqrt{x^2-1}}$. Define $f^n(x) = f(f(x))$ recursively $f^{2024}(2024)$ can be well	
Problem 10 Triangle ABC has side lengths $AB = 17$, $BC = 25$, and $CA = 28$. Point D lies on \overline{BC} such that $AD \perp BC$. Point E lies on \overline{AC} such that $BE \perp AC$. Let P be the point on \overline{AC} such that $\angle BPC = 180^{\circ} - \angle BAC$. Let Q be the intersection of lines DE and BP . The circumradius of triangle PQE can be expressed as $\frac{a}{b}$, where $\gcd(a,b) = 1$. Find $a+b$.	
ANSWER TO PROBLEM 9	ANSWER TO PROBLEM 10