Individual Solutions

1. Notice that the sum of the five numbers at any second remains the same. Therefore, the
sum of the original five values is 5- 11 = 55. Let a be the smallest of the five original values.
Then their sum is at least

a+(a+1)+---+ (a+4) =5a+10.
To maximize a, we want 55 = 5a + 10, which gives a = @

2. There are (g) = 28 total line segments, and there are (228) total ways to pick two of these
segments. These two segments share a point in common with an x-coordinate on the interval
(0,1) if and only if one point from each line lies on the lines z = 0 and x = 1, and the two

lines cross each other. This occurs exactly once for each set of 4 points such that 2 points lie

on the lines x = 0 and 2 points lie on the line x = 1. Thus there are (;1)2 total intersections.
4\2 2

Therefore, the desired probability is E%—z) =57
2

3. VOIDED

4. To ease discussion, give each tile in the grid a pair of (x,y) coordinates. The bottom left
tile is (1,1) and the top right tile is (100, 100). Now consider the top-left to bottom-right
diagonals, which are defined by

r+y=n
for some integer n. Note that a path from the bottom left tile to the top right tile will
transition from diagonals, starting with the n = 2 diagonal, moving to the n = 3 diagonal,
and continuing until the n = 200 diagonal. So, Chris’s optimal strategy is to color entire
diagonals. Coloring the smallest ones first, Chris has just enough to color the diagonals for
n=1,2,...,14 and 187,188, ...,200. Hence, Harry is forced to use at least 28 red tiles.

5. A three-digit number is divisible by 4 iff its last two digits form a multiple of 4. Thus we
need
10b4+c=0 (mod4) and 10b+a=0 (mod 4).

Since 10 = 2 (mod 4), these are equivalent to
c=-2b (mod4), a=—2b (mod 4).
Hence a = ¢ = —2b (mod 4).

Case 1: b even. Then 2b = 0 (mod 4), so a,¢c = 0 (mod 4). Because a # 0 and ¢ # 0,
we must have a,c € {4,8}: 2 choices for a and 2 for ¢ = 4 pairs for each of the 5 even b’s
(0,2,4,6,8).

Case 2: b odd. Then 2b =2 (mod 4), so a,c =2 (mod 4). Thus a,c € {2,6}: again 4 pairs
for each of the 5 odd b’s (1,3,5,7,9).

Therefore the total number of such integers is

5-4+5-4=1[40]



6. Note that
40*c* + 16b%d* + 16a*c* + 64a*d* = (16a> + 4b*)(c* + 4d*) = 31,
and dividing both sides by 4 gives
(mﬁ+wx§+4fy:%;
By the Cauchy-Schwarz inequality,

(4a* + b*)(c* + 4d*) > (2ac + 2bd)>.
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However, we are given ac + bd = %0 2(ac + bd) = 5 and hence (2ac + 2bd)

Thus we have equality, so the vectors (2a,b) and (c, 2d) are proportional; in particular,

d_c
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Cross-multiplying and rearranging yields 4ad = bc, i.e.
be
— =14]
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7. We first fill in the tiles on the grid that we can uniquely determine, which are the numbers
i n bold below. Then, note that placing one tile uniquely determines a set of other tiles.
In particular, we can test these dependencies by putting in a test number and seeing which
tiles get determined. We call such a set of tiles a component, which is defined as one tile
determining the rest of the tiles in the component uniquely. These components are labeled
X.,Y, Z in the grid. Since these are the three variable elements in our grid, there are 23 =
such grids.
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8. The crux of the problem is a counting argument. Assume we are on a square grid, with
bottom left corner (0,0) and top right corner (6,6). Then

12—m—n\{m+n
6—m m
is the number of paths from (0,0) to (6,6) that pass through (m,n). Then, we are summing
this quantity over all points (m,n) in the grid.



We can interpret this summation differently. Note that every path from (0,0) to (6,6)
contributes a value of 13 to the summation, once for each point on the path. So, the
summation is 13 times the total number of paths from (0,0) to (6,6) which is

13 (162) = 13-924 =[12012]

9. Writing out f(f(x)):

F(f() = —‘1 -
(=)
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Therefore, applying this function an even number n of times yields f"(x) = z. So the answer
2024+/1

, and hence the value is

[2026]

10. In the diagram below, we’ve added point H, the orthocenter of ABC, to aid in the solution.

in the required form is

A

e <

It is well-known that

/BHC = 180° — ZBAC = ZBPC,

so BHPC is cyclic. Then focusing on triangle BPC, we see that DE is the Simson line of H
with respect to BPC. This means () = BP N DE is the foot of H onto BP, so ZHQP = 90°.



Then since ZHEP = 90° as well, we see HEP() is cyclic with diameter H P. So, our desired
circumradius is half the length of HP.

To compute H P, we first observe that
/BPA =180 — Z/BPC = ZBAC,

so triangle BPA is isosceles with BA = BP. This means BE is the perpendicular bisector of
AP, and hence by symmetry we have HP = HA. It can be shown that AH = 2R cos A, so
our desired quantity is R cos A. It remains to compute it.

For cos A, we use law of cosines to find

1P -2 8
COS = = —.
2(17)(28) 17

We then have sin A = }—? Hence, by law of sines, we know

25 85
R — 2 15 — F
C 17
Thus, our final answer is
8 8 20




