
2024 DUKE MATH MEET TEAM ROUND SOLUTIONS

1. Note that perfect squares have all even exponents and perfect cubes have exponents all
divisible by 3. It is clear that any prime factors of k other than 2, 3 are unnecessary, so we
have k = 2a · 3b, where a ≡ 0 (mod 3), a+ 1 ≡ 0 (mod 2), b ≡ 0 (mod 2), b+ 1 ≡ 0 (mod 3).
From these equations, we see the smallest possible k = 23 · 32 = 72 .

2. Call the center of the larger circle O. Extend the diameter PQ to the other side of the
square (at point E), and draw AO. We now have a right triangle with hypotenuse 20. Since
OQ = OP − PQ = 20− 10 = 10, we know that OE = AB −OQ = AB − 10. The other leg,
AE, is just 1

2
AB. Apply the Pythagorean Theorem:

(AB − 10)2 +
(
1
2
AB

)2
= 202.

Expanding and simplifying,

AB2 − 20AB + 100 + 1
4
AB2 − 400 = 0 ⇒ AB2 − 16AB − 240 = 0.

By the quadratic formula,

AB =
16±

√
162 + 4 · 240
2

= 8±
√
304.

Discard the negative root, so the answer is

8 +
√
304 .

3. Let the two 3-digit palindromes be

x = aba, y = cdc,



so their sum is a 4-digit palindrome
a b a

+ c d c
e f f e

with leading digit e = 1 (the sum must start with 1).

(a) From the units column, a + c = 1 or a + c = 11. The carry into the thousands place
forces a+ c = 11.

(b) Hence the possible pairs (a, c) (up to order) are

(2, 9), (3, 8), (4, 7), (5, 6).

(c) From the tens column we have b + d + 1 = f (if no carry to the hundreds place) or
b+ d+ 1 = f + 10 (if there is a carry to the hundreds place).

• Case 1 (no carry to hundreds): f = 1 and b + d = 0, so b = d = 0. This gives 4
solutions:

202 + 909 = 1111, 303 + 808 = 1111, 404 + 707 = 1111, 505 + 606 = 1111.

• Case 2 (carry to hundreds): f = 2 and b + d = 11. The ordered digit pairs (b, d)
with b, d ∈ {0, . . . , 9} and b+ d = 11 are

(2, 9), (3, 8), (4, 7), (5, 6), (6, 5), (7, 4), (8, 3), (9, 2),

so there are 8 choices for (b, d) for each of the 4 choices of (a, c), yielding 4 · 8 = 32
solutions.

(d) Total solutions: 4 + 32 = 36.

Therefore, the number of ordered pairs (x, y) of 3-digit palindromes with x+y also palindromic
is

2× 36 = 72 .

4. From x2 − x− 1 = 0 we have x2 = x+ 1, hence

xn+1 = x · xn = xn−1(x2) = xn−1(x+ 1) = xn + xn−1.

By induction this gives
xn = Fnx+ Fn−1 (n ≥ 1),

where (Fn) are Fibonacci numbers (F0 = 0, F1 = 1). Thus

x7 = 13x+ 8, x8 = 21x+ 13, x16 = 987x+ 610.

Therefore
x16 − 1

x8 + 2x7
=

987x+ 610− 1

(21x+ 13) + 2(13x+ 8)
=

987x+ 609

47x+ 29
= 21 .



5. Let Xi be the random variable with

Pr(Xi =
π
3
) = Pr(Xi = −π

3
) = 1

2
, i = 1, 2, . . .

(these indicate the ant’s turn at the ith second, in radians). The point P to which the process
converges can be written

P = 1 +
∞∑
k=1

(
1

2

)k

e i(X1+···+Xk).

Since the Xi are independent,

E
[
e i(X1+···+Xk)

]
=

k∏
j=1

E
[
e iXj

]
=

(
E[e iX1 ]

)k

.

Now
E[e iX1 ] = 1

2

(
eiπ/3 + e−iπ/3

)
= cos

(
π
3

)
= 1

2
.

By linearity of expectation,

E[P ] = 1 +
∞∑
k=1

(
1

2

)k(
1

2

)k

= 1 +
∞∑
k=1

(
1

4

)k

= 1 +
1
4

1− 1
4

=
4

3
.

Therefore, the expected point of convergence is
(
4
3
, 0
)
, and so

3 · 4
3
+ 0 = 4 .

6. We notice that the equation (x2−3x−4)2−3(x2−3x−4)−4−x = 0 resembles the composition
of function f(x) = x2−3x−4 with itself. Indeed, f(f(x)) = (x2−3x−4)2−3(x2−3x−4)−4
and by moving the x term in our original equation, we find that f(f(x)) = x.

The equation f(f(x)) = x always has the solution f(x) = x, as substituting f(x) = x into
f(f(x)) = x yields f(x) = x which is true. From that we get that x2 − 3x − 4 = x, or
x2 − 4x− 4 = 0 is a solution to our equation.

Now, we know that because (x2 − 3x− 4)2 − 3(x2 − 3x− 4)− 4− x is a monic fourth degree
polynomial (by looking at (x2)2, we know that it equals the product of (x2 − 4x − 4) and
some other factor (x2 + ax+ b), yielding

(x2− 4x− 4)(x2+ ax+ b) = (x2− 3x− 4)2− 3(x2− 3x− 4)− 4−x = x4+ cx3+ dx2+ ex+ f

for some coefficients c, d, e, and f .

The finish is simple. Equating coefficients, we know (−4) · b = f = (−4)2 − 3(−4) − 4 =
24 −→ b = −6. Likewise, (−4)a+ (−4)b = e = 2(−3)(−4)− 3(−3)− 1 = 32 −→ a = −2. All
that remains is to find the sum of the positive roots of the two quadratics x2 − 4x− 4 and
x2 − 2x− 6, which is (2 + 2

√
2) + (1 +

√
7) = 3 + 2

√
2 +

√
7 =⇒ 14



7. Reference the diagram below:

The condition ∠AUD = ∠AED gives us symmetry, which coupled with the fact DU = DE
allows us to conclude AD is the angle bisector of ∠BAC and that A,D,K are collinear.
Furthermore, applying law of cosines we find

cos(∠BAC) =
162 + 212 − 192

2 · 16 · 21
=

1

2
,

so ∠BAC = 60◦.

Since we are only interested in the ratio AD : DK, we can avoid direct computations of
lengths. Instead, we express everything in terms of d, the side length of DUKE. Evidently,
DK = d

√
2. For the length AD, we have from before that ∠DAE = 30◦. Also, by collinearity

of A,D,K, we have
∠ADE = 180◦ − ∠KDE = 135◦.

With these two facts, we obtain ∠AED = 15◦. Using law of sines, we equate

AD

sin(15◦)
=

DE

sin(30◦)
=

d

sin(30◦)
,

which allows us to solve

AD = d · sin(15
◦)

sin(30◦)
= d ·

√
6−

√
2

4
1
2

=

√
6−

√
2

2
d.

Hence, our final answer is

AD

DK
=

√
6−

√
2

2
d

d
√
2

=

√
3− 1

2
. =⇒ 6



8. Note that(
2n

n

)
=

(2n)!

n!n!
=

2n · n![(2n− 1)(2n− 3) · · · (3)(1)]
n!n!

=
2n[(2n− 1)(2n− 3) · · · (3)(1)]

n!
.

The numerator has n powers of 2, while the denominator has ν2(n!) powers. So, we want to
maximize n− ν2(n!). By Legendre’s formula, we have

ν2(n) =
n− S2(n)

2− 1
= n− S2(n),

where S2(n) is the sum of digits of n when written in base 2. So, our desired expression is

n− (n− S2(n)) = S2(n).

Thus, we want the maximum sum of binary digits for an integer from 1 to 2024. Note that

210 − 1 ≤ 2024 < 211 − 1,

so the maximum number we can get is 10 .

9. Expanding, and noticing that a = b is a solution the equation, we can factor the eqution as:

(a− b)(ab2 + a2b+ 54b+ a3 − 3a2 − 54a) = 0

Since a and b are distinct integers, we ignore the (a − b) factor and focus on when (ab2 +
a2b+ 54b+ a3 − 3a2 − 54a) = 0.

To solve this, consider it to be a quadratic in b and let us write the auxiliary quadratic
equation:

aχ2 + (a2 + 54)χ+ a(a+ 6)(a− 9) = 0

For this to have integer solutions for χ = b, we know that the discriminant has to be a square
integer.

∆ = (a2 + 54)2 − 4 ∗ a ∗ a(a+ 6)(a− 9) −→ ∆ = −3a4 + 12a3 + 324a2 + 2916

This is quite helpful, as we know that due to the negative leading coefficient, a → ∞ and
a → −∞ sends ∆ to −∞. Thus we can bound a.

To find these bounds, we notice that this is the same as finding the roots of the function f(a) =

−3a4 + 12a3 + 324a2 + 2916, which is like solving f(a)
3

= g(a) = −a4 + 4a3 + 108a2 + 972 = 0.

We notice that for smallish values of a, the value of the function is largely dictated by the −a4

and 108a2 term. To cancel these out, we set a = −10 and notice that f(−10) < 0. On the
positive side, we find that a = 10 is not enough to have f(10) < 0 and by simple additional



guess-and-check we get that f(13) < 0. To be certain these are the bounding values, we
rewrite the function g(a) as g(a) = a2(−a2 + 4a+ 108) + 972. Because a2 will only increase
as |a| increases, we can focus on h(a) = −a2 + 4a+ 108 and observe that this quadratic is
monotonically decreasing from a : −10 → −∞ and a : 13 → ∞. Thus, we derive the bound
−9 ≤ a ≤ 12

Now we need to solve the actual discriminant 3(−a4 + 4a3 + 108a2 + 972) = n2 for integers a
and n. Since we can factor out a 3 on the left hand side, we know 3 | n (n = 3m for some
m ∈ Z). Thus, −a4 + 4a3 + 108a2 + 972 needs to be divisible by 3 as well. Examining
(mod 3) we get a3(4 − a) ≡ 0 (mod 3), which only holds for a = 0 or a = 1 (mod 3). So
a = 3c or a = 3c+ 1 for −3 ≤ c ≤ 4, c ∈ Z.

Substituting n = 3m and a = 3c we get 9(−3c4 + 4c3 + 36c2 + 36) = m2. Disregarding the 9
and checking whether or not −3c4 + 4c3 + 36c2 + 36 is a perfect square for −3 ≤ c ≤ 4 gives
us the solution pairs (a, |n|) : (−9, 27), (−6, 90), (0, 54), (9, 135), (12, 90).

Substituting n = 3m and a = 3c+ 1 we get:

9(−27c4 + 342c2 + 224c+ 361) = 9m2 −→ −27c4 + 342c2 + 224c+ 361 = m2

Checking the values −3 ≤ c ≤ 3 (not 4 as c = 3 · 4 + 1 = 13, which is beyond our bound) is
also pretty simple, giving us the solutions pairs (a, |n|) : (1, 57), (4, 90).

From the quadratic formula solution for the quadratic in b previously, we have:

b =
−(a2 + 54)± |n|

2a

Using this equation and after taking out the unwanted pairs (1, 1) and (12,−9
2
), we can add

all the bi of solution pairs (ai, bi) to get: 6 + 9 + 0 + 15− 56− 20− 15 + 0− 12 = −73



10. Consider the diagram below: Since Q ∈ w1 ∩ w2, Q is the center of the spiral similarity

sending chord AC ⊂ w1 to chord BD ⊂ w2. Equivalently, Q is the Miquel point of the
complete quadrilateral formed by the four lines AC,BD,AD,CB. In particular

Q,B,A,X are concyclic and Q,C,X,D are concyclic.

We will write these as (QBAX) and (QCXD).

Let Y ′ ∈ w1 be the unique point with PY ′ ∥ BX. Then,

∠QY ′P = ∠QCP (same arc QP on w1),

∠QCP = ∠QCD (since C,P,D are collinear),

∠QCD = ∠QXD (equal angles subtending arc QD in (QCXD)),

and, because Q is the spiral center sending CX to XB,

∠QXD = ∠QXB (from similarity △QXD ∼ △QXA or △QCX ∼ △QXB).

Hence
∠QY ′P = ∠QXB.

By construction this says precisely that the angle a line through P parallel to BX makes
with QP equals the angle QXB, i.e. PY ′ ∥ BX. But BX and BD are the same line, while
Y was the point of w1 with PY ∥ BD; by uniqueness of the parallel through P meeting w1

we conclude
Y ′ = Y.

In particular, all angle identities above hold with Y in place of Y ′.

Define Z ′ ∈ w2 by PZ ′ ∥ AX. Repeating the same argument with roles of w1 and w2 swapped
(now using that the spiral at Q sends AX to XD and AC to BD), we obtain

∠QZ ′P = ∠QXA.



But AX and AC are the same line through A and X, and Z was defined by PZ ∥ AC; hence
Z ′ = Z and P,X, Y, Z are all collinear.

This gives us that ∠PAC = arc(PQ) + arc(QC) = ∠PY Q+ ∠QY C = 20◦ + 30◦ = 50◦. We
also get that ∠QBD = ∠QPD = ∠QPC = ∠QY C = 30◦. Combining these two gives our
answer of 80◦ .


