Problems 1-2		Name
Time Limit: 10 minutes		Team
Problem 1		
consists of two letters of the 26-let the second letter does not appear e	ter English alphabet (any let arlier in the alphabet than th	Go-Kart place. He knows that it ter from A - Z). He also knows that the first letter. For example, DU, and these are there for the Go-Kart place?
Problem 2		
How many integers from 1 to 2025, for some positive real number x ?	inclusive, can be expressed in	the form $\lfloor 2x \rfloor + \lfloor 0x \rfloor + \lfloor 2x \rfloor + \lfloor 5x \rfloor$
ANSWER TO PROBLEM 1		ANSWER TO PROBLEM 2

Problems 3-4		Name	
Time Limit: 10 minutes		Team	
Problem 3			
Consider triangle ABC . Let $v(A)$, to the vertices of A, B, C . The value the capacity of an edge AB , denoted $c(AB) = 11, c(BC) = 8, c(AC) = 25$	lue of an edge is the sum of $c(AB)$, is the maximum	of the values of its endpoints, and um allowed value of edge AB . If	
Problem 4			
Fix set $S = \{-3, -2, -1, 0, 1, 2, 3\}$. degree of x and the degree of y equ $a \in S$ and $b \in S$, except possibly (0	al to 6. Assume that $P(a,$	b) = 0 for all pairs (a, b) such that	
ANSWER TO PROBLEM 3		ANSWER TO PROBLEM 4	

MAID MEET INDIVID	UAL ROUND
	Name
	Team
efine ω to be the circle consist	sting of all points X satisfying
$\frac{XA}{XB} = \frac{3}{2}.$	
	t at distinct points M and N . The vely prime positive integers. Find
e integer such that	
$1 + p = q^r$	
s $p-1$ as the product of principle.	mes as follows
$7 \times 6361 \times 69431 \times 20394401$	1×28059810762433
ution (q, r) . Find $q + r$.	
1	ANSWER TO PROBLEM 6
	efine ω to be the circle consist $\frac{XA}{XB} = \frac{3}{2}.$ $\overline{AB}. \text{ Circles } \omega \text{ and } \gamma \text{ intersect}$ $\frac{m}{n}, \text{ where } m \text{ and } n \text{ are relation}$ $1 + p = q^r$ is $p - 1$ as the product of print $7 \times 6361 \times 69431 \times 20394401$

Problems 7-8		Name
Time Limit: 10 minutes		Team
Problem 7		
with this number. He can choose t score 1 point, or delete the first tw	o either delete the first digit wo digits if they are exactly 6 when the number has no mo	and 7. Leo plays the following game (given it has at least one digit) and 67 (given it has at least two digits), ore digits left. The score of a <i>sendy</i> ile playing this game.
For example, the score of 6767 i What's the largest possible score	_	delete 67 twice, for 3 points each. s 500 digits and is divisible by 11?
Problem 8		
discs. When you arrange these dis	scs in a random order (with	indistinguishable white cream filling each possible arrangement equally a non-overlapping pattern "BWB"
For example:		
• The pattern "BWB" counts	as one complete oreo.	
• BWBWB counts as one co BWBBWW.	mplete oreo (not two, as the	he patterns overlap), and so does
• We want to count the maxim and not one.	um number of oreos: BWBW	BWB counts as two complete oreos
		eted number of complete oreos that vely prime positive integers. Find
ANSWER TO PROBLEM 7		ANSWER TO PROBLEM 8

Problems 9-10	Name
Time Limit: 10 minutes	Team
Problem 9	
The cubic polynomial $x^3 - 20x^2 + bx - 125 =$ geometric sequence. Find b .	0 has three real roots that are consecutive terms in a
Problem 10	
respectively. Let Q and R be the other inters A, B, N and C, D, M respectively. Denote R and R as the foot of the altitude from R to R	M and N be the midpoints of diagonals \overline{AC} and \overline{BD} , sections of \overline{BC} and the circles that go through points \overline{P} as the midpoint of \overline{QR} , L as the midpoint of \overline{BC} , \overline{CD} . Let K be the midpoint of \overline{MN} . If $KL=4$ and m and n are relatively prime positive integers. Find
ANSWER TO PROBLEM 9	ANSWER TO PROBLEM 10